The category of MV-pairs
نویسندگان
چکیده
An MV-pair is a pair (B, G), where B is a Boolean algebra and G is a subgroup of the automorphism group of B satisfying certain condition. Recently it was proved by one of the authors that for an MV-pair (B, G), ∼G is an effect-algebraic congruence and B/ ∼G is an MV-algebra. Moreover, every MV-algebra M can be represented by an MV-pair in this way. In this paper we show that one can define a suitable category of MV-pairs in such a way that there exist a faithful functor from the category of MV-algebras to the aforementioned category and a functor in the reversed direction.
منابع مشابه
STONE DUALITY FOR R0-ALGEBRAS WITH INTERNAL STATES
$Rsb{0}$-algebras, which were proved to be equivalent to Esteva and Godo's NM-algebras modelled by Fodor's nilpotent minimum t-norm, are the equivalent algebraic semantics of the left-continuous t-norm based fuzzy logic firstly introduced by Guo-jun Wang in the mid 1990s.In this paper, we first establish a Stone duality for the category of MV-skeletons of $Rsb{0}$-algebras and the category of t...
متن کاملTesting Efficiency of an Arbitrage in Foreign Exchange Market (Forex): Simultaneous Ordering of Three Major Currency Pairs
In searching a market-neutral arbitrage strategy in forex market, we took a portfolio of three major currency pairs, EUR-USD, USD-JPY, and EUR-JPY. There are eight approaches, different cases of short and long positions; for example buying 1st and selling two others, etc. Historical daily FX rates were gathered since January 1990 until February 2011. Monthly covariances between daily growth rat...
متن کاملTHE CATEGORY OF T-CONVERGENCE SPACES AND ITS CARTESIAN-CLOSEDNESS
In this paper, we define a kind of lattice-valued convergence spaces based on the notion of $top$-filters, namely $top$-convergence spaces, and show the category of $top$-convergence spaces is Cartesian-closed. Further, in the lattice valued context of a complete $MV$-algebra, a close relation between the category of$top$-convergence spaces and that of strong $L$-topological spaces is establish...
متن کاملConvergence with a Fixed Regulator in Perfect Mv-algebras
MV-algebras were introduced by Chang as an algebraic counterpart of the Lukasiewicz infinite-valued logic. D. Mundici proved that the category of MV-algebras is equivalent to the category of abelian l-groups with strong unit. A. Di Nola and A. Lettieri established a categorical equivalence between the category of perfect MV-algebras and the category of abelian l-groups. In this paper we investi...
متن کاملOn Prime A-ideals in Mv -modules
In 2003, Di Nola, et.al. introduced the notion of MV -modules over a PMV algebra and A-ideals in MV -modules [5]. These are structures that naturally correspond to lu-modules over lu-rings [5]. Recall that an lu-ring is a pair (R,u), where (R, ⊕, ·, 0, ≤) is an l-ring and u is a strong unit of R (i.e, u is a strong unit of the underlying l-group) such that u · u ≤ u and l-ring is a structure (R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logic Journal of the IGPL
دوره 17 شماره
صفحات -
تاریخ انتشار 2009